Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiaohong Zhang, Zhiping Yang, \ddagger Ping Zhong* and Maolin Hu

Department of Chemistry, Wenzhou Normal College, 325027 Wenzhou, People's Republic of China
\neq Present address: Zhangzhou Vocational and
Technical College, 363000 Zhangzhou,
People's Republic of China

Correspondence e-mail: zhongp0512@163.com

Key indicators

Single-crystal X-ray study
$T=298 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.090$
$w R$ factor $=0.211$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
© 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

1-[2,6-Dichloro-4-(trifluoromethyl)phenyl]-5-[(4-methoxyphenyl)methyleneimino]-1H-pyrazole-3-carbonitrile

The title compound, $\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$, is a tricyclic imide with an overall U -shape, each of the the three rings being planar. In the crystal structure, the molecular packing is stabilized by $\pi-$ π interactions occurring between adjacent methoxyphenyl rings.

Comment

The molecular structure of the title compound, (I), is shown in Fig. 1, with the atom-numbering scheme. The molecule contains three planar groups, forming an overall U-shape.

(I)

Bond lengths and angles (Table 1) are in agreement with those observed in similar compounds (Zhong, Yang, Shi et al., 2005; Zhong, Yang \& Shi, 2005; Chen et al., 2005). The dihedral angles between the pyrazole and the C13-C18 and C2-C7 benzene rings are 24.9 (2) and $73.5(2)^{\circ}$, respectively. In the crystal structure, an overlapped arrangement of the molecules is observed along the b axis (Fig. 2). The C13-C18 benzene rings of centrosymmetrically-related molecules at (x, y, z) and $(2-x, 1-y, 1-z)$ are separated by about $3.48 \AA$, indicating the presence of π-stacking interactions.

Figure 1
The structure of (I), showing the atom-numbering scheme and displacement ellipsoids at the 50% probability level.

Received 15 February 2005
Accepted 3 March 2005
Online 11 March 2005

Experimental

Following the method of Hatton et al. (1993), the reaction of 2,6-dichloro-4-(trifluoromethyl)aniline with a suspension of nitrosylsulfuric acid, followed by reaction with a solution of ethyl 2,3 -dicyanopropionate in acetic acid, gave 5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)pyrazole. The compound was then reacted with 4-methoxybenzaldehyde to give the title compound, (I). Single crystals suitable for X-ray analysis were obtained by slow evaporation of a methanol solution (m.p. 408-410 K). IR (KBr, v cm^{-1}): 3079, 2928, 2847, 2360, 2237, 1604, 1567, 1518, 1425, 1361, $1259,1168,887,824 ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.61(s, 1 \mathrm{H}), 7.76(s, 2 \mathrm{H})$, $7.70(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(d, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(s, 1 \mathrm{H}), 3.86(s$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 164.6$ (1C), 162.4 (1C), 152.8 (1C), 135.9 (1C), 133.5 (1C), 130.8 (2C), 127.4 (2C), 126.6 (2C), 124.4 (1C), 122.0 (1C), 115.5 (1C), 113.4(1C), 113.1 (2C), 95.6 (1C), 56.2 (1C).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{11} \mathrm{Cl}_{2} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}$
$M_{r}=439.22$
Triclinic, $P \overline{1}$
$a=6.7145$ (12) £
$b=10.931$ (2) \AA
$c=13.616(3) \AA$
$\alpha=77.464(3)^{\circ}$
$\beta=83.116(3)^{\circ}$
$\gamma=81.470(3)^{\circ}$
$V=960.8(3) \AA^{3}$

$$
Z=2
$$

$D_{x}=1.518 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 1222 reflections
$\theta=3.1-24.9^{\circ}$
$\mu=0.38 \mathrm{~mm}^{-1}$
$T=298$ (2) K
Block, colourless
$0.34 \times 0.28 \times 0.17 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{\text {min }}=0.880, T_{\text {max }}=0.938$
4901 measured reflections

Refinement

Refinement on F^{2}
3401 independent reflections
2393 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=25.3^{\circ}$
$h=-6 \rightarrow 8$
$k=-13 \rightarrow 12$
$l=-16 \rightarrow 16$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.081 P)^{2}\right. \\
& \quad+0.8129 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.44 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.37 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.090$
$w R\left(F^{2}\right)=0.211$
$S=1.15$
3401 reflections
263 parameters
H -atom parameters constrained

Figure 2
The crystal packing of (I), viewed along the a axis.

All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$, and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$ for aryl and CH H atoms, and $1.5 U_{\text {eq }}(\mathrm{C})$ for $\mathrm{CH}_{3} \mathrm{H}$ atoms. The CF_{3} group may be subject to unresolved disorder, which could account for the weak diffracting ability of the crystal, leading to a rather high R value.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2002); software used to prepare material for publication: SHELXTL.

This work was supported by the National Natural Science Foundation of China (No. 20272043), the Natural Science Foundation of Zhejiang Province (No. M203001) and the Normal Foundation of Wenzhou Normal College (No. 2003Y 18).

References

Bruker (2002). SMART, SAINT, SADABS and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Chen, D., Yang, Z., Zhong, P. \& Hu, M. (2005). Acta Cryst. E61, o702-o703.
Hatton, L. R., Bunain, B. G., Hawkins, D. W., Parnell, E. W., Pearson, C. J. \& Roberts, D. A. (1993). US Patent No. 5232940.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Zhong, P., Yang, Z. \& Shi, Q. (2005). Acta Cryst. E61, o786-o787.
Zhong, P., Yang, Z., Shi, Q., Li, S. \& Tang, R. (2005). Acta Cryst. E61, o5590560.

